Fontes de energia PDF Imprimir E-mail
Avaliação do Usuário: / 0
PiorMelhor 
Ensino Médio - Biologia
Escrito por Milena Queiroz Gonçalves Santos   
Ter, 01 de Junho de 2010 22:16

Fontes de energia


As fontes de energia são extremamente importantes nas atividades humanas, pois originam combustíveis e eletricidade que servem para iluminar, movimentar máquinas, caminhões entre outras aplicações.

As energias facilitam o trabalho do homem que em outras circunstâncias teria uma grande dificuldade, utiliza-se a energia para levantar peso, apertar parafuso, mover veículos, ferver água, etc.

No Brasil as principais energias utilizadas são: Petróleo, hidrelétrica, carvão mineral e biocombustíveis.

Petróleo: a partir desse minério fóssil são processados vários subprodutos utilizados como fonte de energia como a gasolina, óleo diesel, querosene, além de gerar eletricidade nas usinas termoelétricas.

Energia hidrelétrica: produz energia elétrica em usinas hidrelétricas, gerada a partir da movimentação de turbinas impulsionadas por água de rios acumulados em barragens.

Carvão Mineral: esse minério oferece calor para os grandes fornos contidos nas indústrias siderúrgicas e contribui para geração de eletricidade nas usinas termelétricas.

Biocombustíveis: correspondem, por exemplo, ao álcool e o biodiesel, sendo o primeiro um dos principais, seu uso é bastante difundido no Brasil como combustível em veículos automotores, utilização iniciada na década de 70. Os biocombustíveis são combustíveis com fontes renováveis, obtidos a partir do beneficiamento de determinados vegetais, entre os quais podemos citar: cana-de-açúcar, plantas oleaginosas, resíduos agropecuários, eucalipto, além de muitos outros.

Essa fonte de energia, de acordo com especialistas, é uma alternativa relativamente
eficiente para amenizar diversos problemas relacionados à emissão de gases e, automaticamente, combater o efeito estufa. Para isso é preciso promover gradativamente a substituição do uso dos combustíveis fósseis pelos bicombustíveis, até porque o petróleo é um recurso finito e que, segundo pesquisadores, deve acabar por volta do ano de 2070.
Atualmente, a produção de energia a partir de produtos agrícolas é classificada em: etanol, biogás, biodiesel, florestas e resíduos. Em relação à produção do etanol, pretende-se obter totalmente a partir da cana-de-açúcar. O biogás é uma fonte de energia produzida de restos de matéria orgânica em fase de decomposição, como por exemplo, palhas, estercos, bagaços de diversos tipos de vegetais ou lixo. O biodiesel é uma fonte de energia obtida a partir do processamento de determinadas sementes, como de mamona, dendê, girassol, babaçu, amendoim e soja. Os óleos derivados desses vegetais podem ser usados integralmente ou agregados ao diesel (fóssil) em quantidades variadas.

A fonte energética apresentada figura atualmente como uma alternativa frente aos problemas ambientais, a escassez de petróleo e os elevados preços desse produto no
mercado internacional. No entanto, é bom ressaltar que a produção de bicombustíveis também age negativamente nos ambientes naturais e que pode também comprometer a produção de gêneros alimentícios.

Os seres humanos, para o desenvolvimento de suas atividades, necessitam efetivamente dos recursos naturais, as fontes energéticas não são diferentes, dessa forma elas podem ser classificadas em dois tipos: fontes renováveis e não-renováveis.

A primeira corresponde a todo recurso que tem a capacidade de se refazer ou não é limitada, nessas destacam os biocombustíveis, hidrelétricas, energia solar, eólica entre outras. No entanto, esses tipos de fontes de energia não são isentos de provocar impactos na natureza, os biocombustíveis produzem devastação ambiental no desenvolvimento de culturas que servem de matérias-primas tais como a cana-de-açúcar, eucalipto, mamona entre outros, para o cultivo dessas são necessárias imensas propriedades rurais, denominadas de monoculturas, essa prática retira as coberturas vegetais, sem contar o uso de insumos agrícolas (fertilizantes, inseticidas, herbicidas entre outras).
No caso das hidrelétricas os problemas na geração de energia estão na construção das usinas, pois é necessário represar uma grande quantidade de água cobrindo imensas áreas de florestas, dessa forma coloca em risco a fauna e a flora, além da emissão de gases provenientes da decomposição de animais e vegetais contidos no fundo das represas. As energias solar e eólica produzem impactos quase insignificantes e são pouco utilizadas no Brasil.

As fontes não-renováveis correspondem a todo recurso natural que não tem capacidade de se renovar ou refazer, ou seja, que podem acabar (finitos). Dentre os recursos finitos com previsões para esgotar totalmente em pequeno, médio e longo prazo estão o petróleo, carvão, urânio, xisto e muitos outros.

Os recursos energéticos classificados como não-renováveis geralmente produzem poluentes superiores aos renováveis. Os impactos podem surgir a partir da emissão de gases dos veículos automotores, vazamentos em oleodutos, vazamentos de navios petroleiros e muitos outros.
Biodiesel
Biodiesel é um combustível biodegradável derivado de fontes renováveis, que pode ser obtido por diferentes processos tais como o craqueamento, a esterificação ou pela transesterificação. Pode ser produzido a partir de gorduras animais ou de óleos vegetais, existindo dezenas de espécies vegetais no Brasil que podem ser utilizadas, tais como mamona, dendê ( palma ), girassol, babaçu, amendoim, pinhão manso e soja, dentre outras.
O biodiesel substitui total ou parcialmente o óleo diesel de petróleo em motores ciclodiesel automotivos (de caminhões, tratores, camionetas, automóveis, etc) ou estacionários (geradores de eletricidade, calor, etc). Pode ser usado puro ou misturado ao diesel em diversas proporções. A mistura de 2% de biodiesel ao diesel de petróleo é chamada de B2 e assim sucessivamente, até o biodiesel puro, denominado B100.
Segundo a Lei nº 11.097, de 13 de janeiro de 2005, biodiesel é um “ biocombustível derivado de biomassa renovável para uso em motores a combustão interna com ignição por compressão ou, conforme regulamento, para geração de outro tipo de energia, que possa substituir parcial ou totalmente combustíveis de origem fóssil”.
A transesterificação é processo mais utilizado atualmente para a produção de biodiesel. Consiste numa reação química dos óleos vegetais ou gorduras animais com o álcool comum (etanol) ou o metanol, estimulada por um catalisador, da qual também se extrai a glicerina, produto com aplicações diversas na indústria química.
Além da glicerina, a cadeia produtiva do biodiesel gera uma série de outros co-produtos (torta, farelo etc.) que podem agregar valor e se constituir em outras fontes de renda importantes para os produtores.
 
Carvão Mineral

Carvão Mineral é um combustível fóssil natural extraído da terra por processos de mineração. É um mineral de cor preta ou marrom prontamente combustível.
É composto primeiramente por átomos de carbono e magnésio sob a forma de betumes. Dos diversos combustíveis produzidos e conservados pela natureza sob a forma fossilizada, acredita-se o carvão mineral, o mais abundante. Em outras palavras: o processo químico de carbonização reduz-se a uma maceração dos vegetais sob a água das selvas pantanosas, seguida de uma fermentação anaeróbica em meio hídrico, dos hidratos de carbono, do qual são formados hidrogênio, metano e anidrido carbônico.
Estas substâncias são gasosas e, com a compressão, escapam através dos estratos que soterram os vegetais, enriquecendo a massa carbonosa em carbono sólido, restando pouca matéria volátil. A pureza do carvão em relação a matérias estranhas, depende muito de como a massa original foi composta, misturada, transformada, transportada e depositada.
O processo de fermentação anaeróbica chega a um ponto em que é detido pela formação de ácidos, que são dejetos das bactérias anaeróbicas e que criam um meio anti-séptico. O grau de carbonização portanto, não depende da idade de soterramento dos vegetais e sim do tempo de aparecimento dessa fase anti-séptica inibidora do processo de enriquecimento de carbono, da massa carbonosa.

Idade Geológica do Carvão
A idade geológica do carvão brasileiro oscila entre 230 e 280 milhões de anos, que segundo estudiosos do assunto, vem da era paleozóica – período carbonífero, que ainda pode ser dividido em duas classes: Mississipiana e Pelsilvaniana. Como a diferença entre os períodos é irrelevante, considerando que a terra tem quatro e meio bilhões de anos, desde a sua origem, pouco importa.
O quadro abaixo mostra como ocorre a evolução da composição elementar, desde vegetais até o termo mais evoluído do carvão mineral que é o antracito, quase carbono puro:
Composição
Tipo
% O2
% H2
% C
Celulose
49.4
6.2
44.4
Turfa
40.0
6.0
54 a 60
Linhito
25.0
5.0
65 a 75
Hulha
15.0
4.5
75 a 85
Antracito
3.0
2.0
95.0
Produção Mundial
A produção mundial de carvão, pouco mudou, ainda em torno de 5 bilhões de ton/ano, sendo que 16 % das reservas conhecidas e oficialmente calculadas, serão consumidas até o ano 2006.
O carvão não compete com as demais fontes de energia, só para ganhar o título de solução para a crise energética, porem se de repente todas as fontes de energia faltassem, o carvão sozinho daria para assegurar 150 anos de consumo, isso pelos métodos até então conhecidos.
Até o ano 2050, com modesto crescimento no consumo, ainda existirão reservas de petróleo, isso se não surgirem novas áreas, porém se não surgirem outras soluções será o carvão o combustível fóssil disponível, por isso engenheiros que só sabem lidar com o petróleo, estarão desempregados.
Possivelmente, após o ano 2006, já terão sido adotados processos mais eficientes, de modo geral, as máquinas terão maior rendimento térmico, estarão em uso “células combustíveis”, queima para gases ionizados para MHD, gaseificação, liquefação do carvão, ( a África do Sul já faz ), etc, de modo a aproveitar melhor as reservas remanescentes do século XX.
O carvão será, sem dúvida, a última esperança, porem os técnicos deverão tomar decisões importantes, de como utilizar racionalmente, em relação ao desenvolvimento de cada país, considerando meio ambiente e saúde do trabalhador na indústria carbonífera, onde o homem aos 50 anos, está com os pulmões forrados de carbono (carvão) pela Pneumoconiose, sem ânimo e sem força para trabalhar, o que significa, falta de equipamentos e métodos de proteção.

Produção e consumo mundial
A produção nacional de carvão, conforme dados divulgados no Balanço Energético de 1983, se situava em 21.5 milhões de toneladas, de carvão bruto (ROM), para obter pouco mais de 7 milhões de toneladas depois de beneficiado, (33%) para 1996, está previsto 8 milhões de toneladas, quase não aumentou.
No sul do país, o carvão energético é consumido pelas termoelétricas e pelas fábricas de cimento, até o Estado do Espírito Santo, alcançando 8 milhões de toneladas, que representa 33.3% do volume movimentado do subsolo até a superfície, significando que quase 67% é de rejeitos.
A previsão de consumo para 1996 é de 20 milhões de toneladas, sendo na siderurgia 12 milhões, praticamente todo importado, cimento 2 milhões, termoelétricas 4 milhões, papel e celulose ½ milhão e outros 1.5 milhões.
Convém ressaltar experiências que vem sendo feitas, na área de gaseificação e na área de mistura com óleo combustível BPF, para consumo nas refinarias de petróleo. Informações Mundiais sobre a expansão e uso do Carvão Mineral mercado mundial de carvão para geração térmica indicam:
O continente asiático encontra-se em período de franca expansão, com previsão de crescimento de 320.000.000 ton/ano para a China (75% da capacidade de geração) e 200.000.000 ton/ano para a Índia (65% da capacidade de geração). Como exemplo individual, podemos citar a Indonésia, que estuda o aumento da sua capacidade produtiva de 1.600 MW para 23.800 MW até o ano 2010. A participação do carvão mineral deverá subir de 23% para 72% na matriz energética;
O mercado europeu de carvão mineral prevê um aumento de 16% na capacidade de geração do seu parque térmico. Grande parte do fornecimento de carvão mineral deverá ser suprido por produtos importados de outros países, destacando-se a África do Sul e a Colômbia.
O que se observa nos países europeus, é a existência de uma grande preocupação com a implantação e utilização das mais modernas técnicas, e formas eficientes para viabilização da geração térmica a carvão mineral;
As perspectivas para novos projetos nos Estados Unidos podem fazer com que exista uma expansão de 38% na capacidade atual de geração. Aproximadamente 62% da energia americana é gerada em unidades térmicas abastecidas por carvão mineral;
A Austrália continuará sendo um dos maiores exportadores mundiais de carvão mineral, e continuará investindo na geração própria através de unidades térmicas. Atualmente 40% de sua energia é obtida a partir de parque térmico a carvão mineral;
Na América Latina está prevista a instalação de uma capacidade total de geração da ordem de 123.000 MW até o ano 2010. O carvão mineral deverá ser responsável pela implantação de uma capacidade de até 15.000 MW, ou seja, 12% da matriz energética futura. Atualmente, existe um movimento nesta região buscando o suprimento das ineficiências do sistema de geração através da desregulamentação e/ou privatizações de empresas estatais através da atração de investimentos privados nacionais e/ou internacionais.
Os Fatores determinantes para utilização do carvão mineral como energético continuarão sendo a busca pelo desenvolvimento e uso de tecnologias com alta eficiência térmica associadas a baixos níveis de emissão dos poluentes. Isto pode ser verificado, notadamente, pela implantação de políticas e compromissos assumidos por diversos países pela utilização de sistemas similares ao Clean Air Act dos Estados Unidos.
Examinando o crescimento da demanda de energia, podemos observar que a sua geração e o correto modelo de gerenciamento das unidades térmicas deverá ser realizado com a implantação de rígidas políticas de controle ambiental, tanto em unidades antigas, como nos projetos em implantação e em viabilização.
Na Europa e Estados Unidos, houve uma mudança no enfoque da pesquisa tecnológica voltada ao meio ambiente. O controle ambiental sobre a produção de gases do tipo SOx e NOx possuem 95% de suas emissões resolvidas com a instalação de equipamentos e/ou processos já definidos e consagrados.
O novo foco recai agora sobre o controle das emissões dos gases que possuem influência sobre as mudanças do clima da Terra (gases de efeito estufa). No caso da indústria extrativa de carvão mineral, os gases responsáveis pelo maior impacto são o dióxido de carbono (CO2) e o metano (CH4).
A continuidade da utilização de combustíveis fósseis na geração de energia, acarreta a concentração cumulativa dos gases emitidos por estas fontes na atmosfera. O quadro de não reversão dos processos regenerativos da atmosfera e a saturação pela concentração destes gases, aumentam as conseqüências do efeito estufa sobre o planeta. A tabela 04 apresenta a situação do cenário internacional de geração de energia para diversos países e o Brasil.

Gás natural
O gás natural é composto por uma mistura de hidrocarbonetos leves (metano, etano, propano, butano e outros gases em menores proporções) que submetido à temperatura ambiente e pressão atmosférica permanece no estado gasoso. É uma fonte energética encontrada na natureza em duas formas distintas. Ele pode ser obtido em jazidas e através da queima de biomassa (bagaço de cana-de-açúcar).

O gás natural encontrado em jazidas normalmente está associado ao petróleo. Constitui reservas finitas, e, conforme pesquisas realizadas pela IEA (Agência Internacional de Energia), caso se mantenha o ritmo de consumo médio da última década, as jazidas de gás natural irão se esgotar em 100 anos. Essa fonte energética agride menos o meio ambiente que o petróleo e o carvão mineral. No entanto, por ser de origem fóssil, sua combustão contribui para o efeito de estufa.

Já o gás natural, obtido através da queima de biomassa, é um combustível renovável, sua utilização é menos impactante e os custos econômicos são menores.

As tubulações responsáveis pelo envio de gás natural das fontes produtoras até os consumidores recebem o nome de gasoduto. O Brasil possui o gasoduto Bolívia – Brasil. São tubulações de diâmetro elevado, operando em alta pressão que transportam gás natural da Bolívia (produtor) para alguns Estados brasileiros (consumidores).
Depois de tratado e processado, o gás natural pode ser utilizado nas indústrias, residências, automóveis e comércio. Nas indústrias, sua utilização ocorre, principalmente, para a geração de eletricidade. Nas residências, o gás natural é usado para o aquecimento ambiental e de água. Nos automóveis, essa fonte energética substitui os combustíveis (gasolina, álcool e diesel). No comércio, sua utilização se dá principalmente para o aquecimento ambiental. Atualmente a utilização do gás natural corresponde a 18% do consumo energético mundial.

No Brasil, com a descoberta da camada pré-sal, que consiste em um óleo em camadas profundas - de 5 a 7 mil metros abaixo do nível do mar, estimativas apontam que o país irá dobrar seu volume de gás natural.
Pelo próprio nome, energia eólica é aquela produzida pela transformação da energia cinética dos ventos em energia elétrica. O vento constitui uma imensa fonte de energia natural.
Existem, atualmente, mais de 20.000 turbinas eólicas de grande porte em operação no mundo, com uma capacidade instalada de 5.500 MW. De acordo com a Agência Internacional de Energia, a capacidade mundial de turbinas eólicas instaladas alcançará 10.000 MW até este ano (2000). Na Europa, espera-se gerar 10% de toda eletricidade a partir do vento, até o ano 2030.

Sobre os ventos
O vento é o ar em movimento devido ao aquecimento desigual da superfície terrestre pelo sol.
A Terra e seu envelope de ar, a atmosfera, recebe mais calor solar próximo ao Equador do que nas regiões polares. Mesmo assim, as regiões equatoriais não ficam mais quentes a cada ano, nem as polares ficam mais frias.
É o movimento do ar ao redor da Terra que ameniza a temperatura extrema e produz ventos na superfície tão úteis para a geração de energia.
Como todos os gases, o ar se expande ou aumenta de volume quando aquecido, e contrai e diminui de volume quando resfriado. Na atmosfera, o ar quente é mais leve e menos denso do que o ar frio e se eleva a altas atitudes quando fortemente aquecido pelo Sol.
O ar aquecido próximo ao Equador fluirá para cima, e então, na direção dos pólos onde o ar próximo a superfície é mais frio. As regiões terrestres próximas aos pólos, agora, têm mais ar, pressionando-as, e o ar da superfície mais fria tende a desligar dessas áreas e movimentam-se na direção do Equador. Como conclusão, vemos que o vento se desloca da região de maior pressão para a região de menor pressão.
Depois de entender a circulação das massas de ar no planeta em geral, temos um caso não tão grande, mas de mesmo mecanismo, que são as brisas do mar.
A força motora primária da brisa do mar é o resultado da diferença de temperatura entre a terra e o mar. Quando essa diferença é grande e diurna, podem ser esperadas brisas marinhas relativamente fortes durante as horas da tarde e no começo da noite.
As brisas marinhas mais intensas são encontradas naquelas regiões subtropicais secas, ao longo da costa oeste de continentes onde haja um oceano frio. É precisamente nessas regiões que o vento predominante é geralmente fraco e a brisa marinha local é na verdade quase a única fonte de energia eólica por grande parte do ano.
A topografia, ou características físicas do solo, podem influenciar fortemente as características do vento. As montanhas impedem a passagem uniforme dos ventos, o ar canalizado ao redor ou através das aberturas freqüentemente aumenta os ventos fortes locais, ideais para geradores de energia eólica.

Conversão da energia eólica
Um aerogerador consiste num gerador elétrico movido por uma hélice, que por sua vez é movida pela força do vento. A hélice pode ser vista como um motor cujo único combustível é o vento.
A quantidade de energia disponível no vento varia de acordo com as estações e as horas do dia. A topografia e a rugosidade do solo também tem grande influência na distribuição de freqüência de velocidade do vento em um único local. Além disso, a quantidade de energia eólica extraível numa região depende das características do desempenho, altura de operação e espaçamento horizontal dos sistemas de conversão de energia eólica instalados.

A quantidade de eletricidade que pode ser gerada pelo vento depende de quatro fatores:
  • Da quantidade de vento que passa pela hélice
  • Do diâmetro da hélice
  • Da dimensão do gerador
  • Do rendimento de todo o sistema
As turbinas são, em princípio, instrumentos razoavelmente simples. O gerador é ligado através de um conjunto acionador a um rotor constituído de um cubo e duas ou três pás. O vento aciona o rotor que faz girar o gerador e produzir eletricidade.
Tipos de turbinas eólicas
Turbinas eólicas de eixo horizontal: pode ser de uma, duas, três ou quatro pás ou multipás. A de uma pá requer um contrapeso para eliminar a vibração. As de duas pás são mais usadas por serem fortes, simples e mais baratas do que as de três pás.
As de três pás, no entanto, distribui as tensões melhor quando a máquina gira durante as mudanças de direção do vento. As multipás não são muito usadas, pois são menos eficientes.
Turbinas eólicas do eixo vertical: não são muito usadas, pois o aproveitamento do vento é menor. As mais comuns são três: Savonius, Darrieus e Molinete.
Outras utilizações da força eólica
A) Moenda de milho
Como a maioria dos moinhos europeus possui pás verticais, elas giram à medida que parte do movimento horizontal do vento é transformada em movimento de rotação das pás. Este movimento é transferido por engrenagens e polias para uma pedra de moenda, que tritura os grãos. Para aproveitar ao máximo a energia do vento, a cobertura do moinho gira automaticamente para ficar de frente para o vento toda vez que ele muda de direção.
B) Barcos à vela
A maioria dos barcos à vela modernos, têm velas triangulares que podem ser manobradas para captar o máximo da energia do vento. Os barcos egípcios, de cerca de 1.300 a.C., usavam velas quadradas que só podiam aproveitar com eficácia a energia do vento quando este vinha por trás. Por volta de 200 a.C., os navios do mediterrâneo usavam velas que podiam ser manobradas, aproveitando a energia do vento mesmo quando ele não soprava por trás delas.
História do uso da energia eólica pelo homem
Uma das primeiras formas de energia conhecida, o vento já era empregado para mover barcos à vela de pano em 3.500 a.C.. Em terra, os primeiros moinhos de vento talvez tenham aparecidos na Pérsia por volta de 700 d.C.. As pás giravam horizontalmente e eram conectadas diretamente a pedras de moenda que triturava grãos.
Durante o fim da Idade Média e o início da Idade Contemporânea, a energia eólica foi bastante usada pelos navegadores e também pelos holandeses para drenar regiões alagadas.
Mas é na segunda metade do século XX que a energia eólica teve um aproveitamento e desenvolvimento mais profundo, no sentido de produzir energia elétrica. Considerada fonte alternativa de energia, ganha destaque pela não agressão ao meio ambiente, causando um aumento pelo interesse nessa fonte de energia (lembrando também que essa procura também é impulsionada pela alta no preço do barril do petróleo). O que atrapalha sua proliferação é o elevado custo para a sua instalação, mas sua fonte é inesgotável.
Como exemplo de aerogeradores construídos, temos:
(1890-1910) - Dinamarca- 23 m de diâmetro - 3 pás - 200 kW
(1931) - Rússia - 30 m de diâmetro - 3 pás - 100 kW
(1941) - EUA- 54 m de diâmetro - 2 pás- 1250 kW
(1959) - Alemanha - 34 m de diâmetro - 2 pás - 100 kW
(1978) - EUA (NASA) - 50 m de diâmetro - 2 pás - 200 kW
(década 80/90) - Brasil (Recife-Ne) -C.Br.Em.Eólica - potencial de 6 000 MW - instalados apenas 21,7 MW (fonte: Ver. Galileu-Ag/2000)
Existem atualmente mais de 20.000 turbinas eólicas em operação no mundo, produzindo mais de 2 bilhões de kWh anualmente.
PRÓ: poluição zero. Pode ser complementar às redes tradicionais.
CONTRA: instável, está sujeita a variações do vento e a calmarias. Os equipamentos são caros e barulhentos.